
Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Decision Theory and the Logic of Provability

Patrick LaVictoire

Machine Intelligence Research Institute

18 May 2015

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

1 Motivation and Framework
Motivating Question
Decision Theory for Algorithms
Formalizing Our Questions

2 Prisoner’s Dilemma with Source Code Reading
Circles of Mutual Cooperation
FairBot and Löbian Cooperation

3 Proof-Based Counterfactuals
Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

4 What’s Next?
Conclusions
Open Problems
Thanks and Questions

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Motivating Question
Decision Theory for Algorithms
Formalizing Our Questions

Motivating Question

What decision problems remain non-obvious, even if we assume the
agent is practically omniscient?

Philosophical example: Newcomb’s Dilemma

In this talk, we will explore a very artificial context in which an
agent has full knowledge of a decision problem and vast computing
power to spend on it, and show that certain self-referential
problems still emerge.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Motivating Question
Decision Theory for Algorithms
Formalizing Our Questions

Framework for Decision Theory Problems

Everything takes place within a virtual environment: a
program U() that takes no input.

Within U() there is a subprogram A(), which we will think of
as the agent.

A() outputs an action, and U() outputs a utility.

We will usually assume that U() and A() are allowed to use
arbitrary amounts of computation, up to and including access
to halting oracles.

A() is allowed to know the source code of U() and of A().
(Possible via quining.)

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Motivating Question
Decision Theory for Algorithms
Formalizing Our Questions

Example of Agent and Universe

def U():

if A()=1:

return 3

else if A()=2:

return 5

else return 0

def A():

return 2

Clearly, this agent returns action 2 and this universe returns utility
5.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Motivating Question
Decision Theory for Algorithms
Formalizing Our Questions

Formalizing Our Questions

We can then generate some useful questions about decision theory
in this context:

Are there any counterintuitive outcomes for simple A() and
U()?

Given a template for U() where we can substitute in any A(),
what A() gets the best outcome?

Are there algorithms A() which reliably do well when
substituted into many different universes U()?

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Circles of Mutual Cooperation
FairBot and Löbian Cooperation

Prisoner’s Dilemma with Source Code Reading

We can consider multiplayer games with a universe U() which calls
on agents A1(), . . . ,AN() and returns a vector of utilities
〈u1, . . . , uN〉 representing the score for each agent. (Note: for each
agent, the other agents can be seen as just part of the universe!)

Specifically, let’s consider a one-shot Prisoner’s Dilemma between
two algorithms that get to read one anothers’ source codes.
(Variation on algorithmic tournaments of Iterated Prisoner’s
Dilemma!)

What algorithm might you submit to such a test?

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Circles of Mutual Cooperation
FairBot and Löbian Cooperation

Cliqueish Cooperation

We’ll use pXq to represent the source code of an agent X , and
Y (pXq) to represent the action of agent Y in the universe where
it plays against agent X .

def DefectBot(pXq):
return D

def CliqueBot(pXq):
if pXq = pCliqueBotq:

return C
else return D

Versions of CliqueBot independently invented by Howard (1988),
McAfee (1984), Tennenholtz (2004).
But all of these would be in different cliques!

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Circles of Mutual Cooperation
FairBot and Löbian Cooperation

Circles of Mutual Cooperation

Goal: write an algorithm X that cooperates with Y only if that is
necessary to imply that Y cooperates with X .

Problem: this is poorly defined and requires a good notion of
counterfactual reasoning!

Simpler version: write an algorithm X that cooperates with Y if
and only if Y cooperates with X . Let’s call this idea FairBot.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Circles of Mutual Cooperation
FairBot and Löbian Cooperation

FairBot

First attempt:

def EvalFairBot(pXq):
if X (pEvalFairBotq) = C:
return C

else return D

Problem: This never finishes evaluating against itself!

Slepnev (2011) considered seeking proofs in Peano Arithmetic:

def ProofFairBot(pXq):
if PA` X (pProofFairBotq) = C:
return C

else return D

Claim: This cooperates with itself with a finite proof search!

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Circles of Mutual Cooperation
FairBot and Löbian Cooperation

Löb’s Theorem

Theorem (Löb’s Theorem)

Let ϕ be a formula in the language of PA, and let �ϕ be the
formula in PA which asserts that ϕ is provable in PA. Then if
�ϕ→ ϕ is provable in PA, ϕ itself must be provable in PA.

Example 1: ϕ a tautology like 2 + 2 = 4 or >. Then > is
provable in PA, so is �>, and so is �> → >.

Example 2: ϕ a contradiction like 2 + 2 = 5 or ⊥. ⊥ is not
provable, and neither is �⊥. �⊥ → ⊥ is true in the standard
model of N but not provable: it is equivalent to ¬�⊥ which
asserts that PA is consistent.

Example 3: ϕ is an undecidable statement like Gödel’s G ,
where G ↔ ¬�G . Since then �G → G is equivalent to G
itself, it cannot be provable in PA.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Circles of Mutual Cooperation
FairBot and Löbian Cooperation

Löbian Cooperation

def ProofFairBot(pXq):
if PA` X (pProofFairBotq) = C:
return C

else return D

Claim: This cooperates with itself with a finite proof search!

Proof of Claim: Let ϕ be the claim that the two copies of FairBot
mutually cooperate. If ϕ is provable in PA, then each copy of
FairBot will find the proof that the other copy cooperates, and this
will cause each copy to actually cooperate. Thus we can formally
show that �ϕ→ ϕ; thus ϕ is provable via Löb’s Theorem.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Proof-Based Counterfactuals

This suggests that we can use provability in formal systems as a
notion of decision-theoretic counterfactuals for algorithmic agents.

Explicitly, we will construct agents that seek proofs of statements
A() = a→ U() = u for various actions a and utilities u, and then
take actions which achieve the best available utility.

This approach can fail for an interesting reason!

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Spurious Proofs

def U():

if A()=1:

return 5

else return 3

def A():

utility[1], utility[2]← −∞
if PA` A() = 2→ U() = 3:
utility[2]← 3

for u ∈ [5, 0]:
if PA` A() = 1→ U() = u:
utility[1]← u

return argmax(utility)

Claim: A() = 2!

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Proof of Claim

Clearly PA` A() = 2→ U() = 3, so utility[2]← 3.

Clearly PA` A() = 1→ U() = 5, so utility[1]← 5.

I claim that PA` A() = 1→ U() = 0. How? Löb’s Theorem!

Let ϕ be the statement A() = 1→ U() = 0; we will prove
that �ϕ→ ϕ, and thus that PA` ϕ.

If �ϕ, then what actually happens? utility[1]← 0, and thus
A() = 2. But that makes A() = 1→ U() = 0 formally true.

And this reasoning can be done in PA itself! Thus PA indeed
proves that �ϕ→ ϕ, thus PA proves ϕ, and thus A() = 2.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Playing Chicken With Peano Arithmetic

The problem arose because PA could actually prove that A() = 2.
We can prevent this by ensuring that PA cannot predict what A()
is, in the following way:

Before doing anything else, for each available action a, look for a
proof of the statement A() 6= a; if such a check succeeds,
immediately take action a.

Since we (from outside) presume PA consistent, we know that it
cannot succeed at any such proof, and thus the value of A() will
be undecidable in PA.

Indeed, a chicken-playing decision theory works well, except for one
problem: it cannot achieve Löbian cooperation with itself, since it
cannot prove that another copy of it will cooperate.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Descending Order of Search

We assume that A() chooses among a finite set A of actions, and
U() is known to lie in a finite set U of utilities.

def A():

for u ∈ U, in descending order:

for a ∈ A:
if PA` A() = a→ U() = u:
return a

else return some default action

In a broad class of simple universes, we can show that this decision
theory does as well as possible; moreover, it achieves mutual
cooperation with itself on the Prisoner’s Dilemma, and can be
slightly modified to be inexploitable.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Logical Counterfactuals

A third response to spurious counterfactuals is to ask whether
there is some formal criterion besides provability in which the
counterfactual A() = 1→ U() = 5 is valid but the counterfactual
A() = 1→ U() = 0 is not. If we can isolate such a criterion for
logical counterfactuals, then we could directly use it in decision
theory.

Intuitive example: “If Fermat’s Last Theorem had been false, then
elliptic curves would have had property X” is a valid logical
counterfactual. “If Fermat’s Last Theorem had been false, then 3
would be an even number” is not.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

The Modal Logic GL

A nice tool for examining proof-based counterfactuals: Gödel-Löb
modal logic. Briefly:

Modal logic: propositional logic with the operator � and new
rules and axioms for handling it

Modal logic GL: includes the Löbian axiom schema
�(�ϕ→ ϕ)→ �ϕ
Fixed point theorem: if agents and universe defined by
formulas of modal logic, and agents depend on universe and
each other only via provability, there’s a unique fixed logical
outcome and a polynomial-time algorithm for calculating it!

Get a “model checker” for modal decision theories and modal
game-playing agents.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Spurious Proofs
Defences Against Spurious Proofs
Modal Logic of Provability

Optimality for Modal Decision Theories

A universe is extensional if the outcome depends on the agent only
via its action, i.e. if swapping the agent for another agent that
outputs the same action will lead to the same outcome.

Theorem

For any provably extensional modal universe, if either the
chicken-playing agent or the descending-search-order agent above
does its deductions in PA+¬�n⊥ for n sufficiently large, it gets
the best outcome achievable by any modal agent in that universe.

This is a strong condition on universes, and does not apply to
universes (or other agents in those universes) that act differently
based on the provability of the agent’s action (e.g. depend on
�[A() = 1] rather than just on A() = 1). In fact, there is a pair of
(non-extensional) modal universes such that no modal agent can
be optimal on both.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Conclusions
Open Problems
Thanks and Questions

Conclusions

Proof-based counterfactuals are rich, interesting, and
tractable for study.

Proof-based counterfactuals can allow forms of safe mutual
cooperation without prior coordination.

Proof-based counterfactuals can include spurious
counterfactuals that do not match our intuitions about logical
counterfactuals.

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Conclusions
Open Problems
Thanks and Questions

Open Problems

Are there restricted forms of optimality that hold for our
modal decision theories in non-extensional universes?

Are there tractable ways to study proof-based counterfactuals
outside of the modal case?

Is there a formal notion that corresponds to our intuitions
about logical counterfactuals? (E.g. length of shortest proof,
probability measures over models, etc)

Patrick LaVictoire Decision Theory and the Logic of Provability



Motivation and Framework
Prisoner’s Dilemma with Source Code Reading

Proof-Based Counterfactuals
What’s Next?

Conclusions
Open Problems
Thanks and Questions

Questions?

Thanks to CSER, MIRI, the organizers, the donors, my colleagues,
and the counterfactual versions of myself whom I simulated in
order to make decisions in the writing of this talk.

Patrick LaVictoire Decision Theory and the Logic of Provability


	Motivation and Framework
	Motivating Question
	Decision Theory for Algorithms
	Formalizing Our Questions

	Prisoner's Dilemma with Source Code Reading
	Circles of Mutual Cooperation
	FairBot and Löbian Cooperation

	Proof-Based Counterfactuals
	Spurious Proofs
	Defences Against Spurious Proofs
	Modal Logic of Provability

	What's Next?
	Conclusions
	Open Problems
	Thanks and Questions


