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Anomaly Detection

Anomalies : points that are generated by a process that
is distinct from the process generating “normal” points

In this talk Anomaly = Threat
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Anomaly Detectors

We focus on density-based anomaly detectors

Statistical Outliers : points with low density values
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Not all statistical outliers are anomalies of interest
(statistics versus semantics)
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Anomaly Detection Pipeline

Data Points Outliers Alarms
Threats & Anomaly Threats & Human Threats &

Non-Threats Detector \ False Positives ) Analyst \ False Positives

Non-Outliers Discarded

Non-Threats & Non-Threats &
Missed Threats Missed Threats

» Type 1 Missed Threats = Anomaly Detector’s False Negatives
— Reduce by improving anomaly detector

- Type 2 Missed Threats = Analyst’s False Negatives

— Can occur due to information overload and time constraints

How can we reduce type 2 errors?
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Anomaly Detection Pipeline
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* Goal: reduce analyst effort for correctly detecting outliers that are threats

* _How: provide analyst with “explanations” of outlier points

Why did the detector consider an object to be an outlier?

Analyst can focus on information related to explanation.
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Anomaly Detection Pipeline

Outliers +
Data Points _Explanations > Alarms
Threats & Anomaly Threats & Human Threats &
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Non-Outliers Discarded

Non-Threats & Non-Threats &
Missed Threats Missed Threats

+ Sequential Feature Explanation (SFE): an ordering on features of an
outlier prioritized by importance to anomaly detector
- (F2, F10, F37, F26 .....))

* Protocol: incrementally reveal features ordered by SFE until analyst
makes a determination
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SFE Example

Analyst’s belief about normality of X
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How do we evaluate SFE quality?



SFE Example

Analyst’s belief about normality of X
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Feature Ordering for X

Minimum Feature Prefix (MFP). Minimum number of
features that must be revealed for the analyst to become
confident that a threat is truly a threat.




Optimizing MFP

Analyst’s belief about normality of X
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Ideal Objective: computeSFE Wit mirimum MFEP

But ..... We don’t know the analyst belief model or threshold |
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Ideal Objective: computeSFE Wit mirimum MFEP

Assumption 1: analyst’s beliefs modeled by learned density f(x)
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Assumption 1: analyst’s beliefs modeled by learned density f(x)

Assumption 2: distribution Pr(threshold) over possible thresholds
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Realizable Objective: compute SFE with minimum expected MFP
under assumptions 1 and 2

Assumption 1: analyst’s beliefs modeled by learned density f(x)

Assumption 2: distribution Pr(threshold) over possible thresholds



Optimizing MFP
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Realizable Objective: compute SFE with minimum expected MFP
under assumptions 1 and 2

NP-hard problem

Not Covered Today: branch and bound optimization procedure
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Greedy Optimization: Independent Marginal
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Feature Ordering for X

Independent Marginal: computationally cheaper
e Order features according to increasing f(xi:)

* |.e.order according to independent
anomalousness of each feature
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Greedy Optimization: Indepedent Dropout
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Independent Dropout: inspired by [Robnik et al., 2008]
for computing supervised learning explanations

* Order features according to decreasing f(xi—:)

* |.e.order according to how much more normal x
looks after removing the feature
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Greedy Optimization: Sequential Dropout
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Feature Ordering for X

Sequential Dropout:
e Select first feature 7 as one that maximizes f(xi—:)

* Select second feature j as one that maximizes £/
—1=/)



Evaluating SFEs

Analyst’s belief about normality of X
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Problem: Evaluating an SFE requires access to an analyst, but
we can’t run large scale experiments with real analysts
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Analyst’s belief about normality of X
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Problem: Evaluating an SFE requires access to an analyst, but
we can’t run large scale experiments with real analysts

Solution: Construct simulated analyst for anomaly detection
benchmarks



Evaluating Explanations

e Start with anomaly detection benchmarks constructed from UCI
supervised learning data set [Emmott et al., 2013]

— Each benchmark has known anomaly and normal classes
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Evaluating Explanations

Start with anomaly detection benchmarks constructed from UCI
supervised learning data set [Emmott et al., 2013]

— Each benchmark has known anomaly and normal classes

Learn a classifier P(normal | x) to predict normal vs. anomalous for
any feature subset

— Can serve as a simulated analyst

UCI Dataset

Normal
Points

Supervised
Learning

Anomaly
Points

Anomaly Detection Benchmark

Slmulated Analyst
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Evaluating SFEs

Analyst’s belief about normality of X

Simulated Analyst

' 04 06 08 1.0

MFP =4
h Threshold
P ( n T I T I I ] |
1 5 2 6 7 4

Feature Ordering for X

rmcz/

Evaluation Metric : expected MFP of simulated analyst

Us} 2%9able distribution over thresholds.




Results of Explanations for EGMM
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Use an ensemble of GMMs (EGMM) as the learned density f(x)



Oracle Experiments

Explanation evaluation depends on two factors:
1. Quality of f(x)

* How well does f(x) match true analyst?

2. Quality of explanation computation

To assess (2) we run experiments that replace f(x) with
ground truth analyst



Results of Explanations for Oracle Detector
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Result on KDDCup99 Dataset
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Key Observations from the Experiments

All methods significantly beat random
Marginal methods no worse and sometimes better than dropout

Independent marginal is nearly as good as sequential marginal
— But sequential is significantly better in oracle experiments

The “weaker signals” produced by the Dropout methods when taking
early decisions makes it less robust compare to the Marginal methods
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Summary

Reducing effort of analyst to detect threats can reduce the analyst miss
rate

Proposed sequential feature explanations to guide analyst investigation
Proposed an evaluation framework for explanations
Designed 4 greedy explanation methods and evaluated

Preferred Method: sequential marginal



Future Work

Further evaluations
— Additional anomaly detectors (e.g. with PCA applied)
— Larger feature spaces

Evaluate non-greedy algorithms
— Branch-and-Bound

Anomaly exoneration

Alternative types of explanations



Questions



SFE Calculation

* We assume, for every feature subset sthere exists a particular threshold 7
such that for any instance x: f(xls)<zimplies xis an anomaly

* To find optimal S#Z£ we first define the ##P of a SF£ £ for an instance x:
MFP(x, £, t(£))=min{ [ . f(xlEIL1:i )<tli (£) }

Where

/() is the density function

7(£) is the set of thresholds, where 7/ (£) is a random variable corresponding
to the feature subset £Y1:/



SFE Calculation

* Expected MFP

MFP(xE)=Elt(E) [MFP(x%E,(E))]

* Objective function for getting optimal /7~ of x:
arg min—£ MFP(x,£)

* The objective function is hard to optimize, hence, we introduce two greedy
methods: Marginal and Dropout, those approximately try to minimize the
objective function for computing SFE



Explanation Algorithms

f(x)is the learned “normal”

Sequential Marginal:
* Choose First feature i that minimizes f(xdi)
* Choose Second feature j that minimizes f(xd7,xd/)

Independent Marginal: computationally cheaper
* Order features according to increasing f(xJ7)
* |.e. order according to independent anomalousness of each feature

Independent Dropout: inspired by [Robnik et al., 2008] from supervised learning
* Order features according to decreasing f(xi—:)

* |.e. order according to how much more normal x looks after removal

Sequential Dropout:

* Select first feature 7as one that maximizes f(xi—17)
* Select second feature j as one that maximizes f(xi—i—;)



