Asymptotic Logical Uncertainty and the Benford Test

Scott Garrabrant^{1,2}, Tsvi Benson-Tilsen^{1,3},Siddharth Bhaskar², Abram Demski^{1,4}, Joanna Garrabrant, George Koleszarik, and Evan Lloyd²

> ¹Machine Intelligence Research Institute ²University of California, Los Angeles ³University of California, Berkeley ⁴University of Southern California

The Ninth Conference on Artificial General Intelligence, 2016

Asymptotic Logical Uncertainty and the Benford Test (AGI 2016)

Outline

- Logical Uncertainty
 - Motivation
 - Related work
- Our approach
 - Operationalizing pseudo-randomness
 - Generalized Benford test
 - Computable algorithm

Motivation

- "Probability" Over Logical Statements
 - State of belief for a conjecture
 - Guessing the outcome of a long computation
- ► 𝒫("P=NP") = 0.1?
 - Measure of surprise on seeing (dis)proof?
 - Measure of calibration on similar statements?
- $\mathbb{P}(\text{"The } 10^{100} \text{ digit of } \pi \text{ is a 3"}) = 0.1?$
 - Element of a pseudo-random sequence

Motivation

- Standard probability theory requires logical omniscience[1]
 - Coherence requires knowledge of all logical consequences of current beliefs
 - (eg: same probability on equivalent sentences)
 - (can relax in some ways[2, 3])
- Other approaches converge to coherent distribution eventually[4, 5]
 - Generally not computable
- (see sections 1 and 2 of paper)
- [1]: Parikh: Knowledge and the Problem of Logical Omniscience
- [2]: Cozic: Impossible States at Work: Logical Omniscience and Rational Choice
- [3]: Halpern and Pucella: Dealing with Logical Omniscience
- [4]: Hutter et al: Probabilities on Sentences in an Expressive Logic
- [5]: Demski: Logical Prior Probability.

Operationalizing Pseudo-randomness in Logic

- Fix an enumeration of sentences, ϕ_1, ϕ_2, \ldots
- Pick a finite time bound T(N) > N
- Point to an infinite subset of logic with a Turing machine, Z:

 $S = \{\phi_i | Z \text{ halts within } T(i) \text{ steps, pointing at a 1} \}$

- "Pseudo-random" sentences are decidable, but in more than T(N) steps
 - *ie*, there is a binary sequence $\{b_i\}$ where
 - $b_i = \begin{cases} 1 & \text{if the } i^{th} \text{ element of } S \text{ is provable} \\ 0 & \text{if disprovable} \end{cases}$

No simple Turing machine can predict {b_i} with odds better than chance after T(N) steps

Operationalizing Pseudo-randomness in Logic

- ► More formally, for a given S and description length K(W), consider all Turing machines W :
 - Run W with time limit of T(N) steps
 - Interpret as selecting a subset of S :

 $S' = \{\phi_i \in S | W \text{ halts within } T(i) \text{ steps, pointing at a 1} \}$

"Empirical" frequency of provable sentences as a function of sample size m:

 $r(m, W) \equiv \frac{\left| \{s \in \text{smallest m elements of } S' | \phi_s \text{ is provable} \} \right|}{m}$

Irreducible Patterns

The law of the iterated logarithm gives a bound that holds almost surely for any random sequence, as a function of sample size and the generating frequency p:

$$|r(m, W) - p| < \frac{c \cdot K(W) \cdot \sqrt{\log \log m}}{\sqrt{m}}$$

• We call a set of decidable sentences to be an *irreducible* pattern with respect to p and k = K(W) if this bound holds for all machines of description length k

Example Irreducible Patterns

- We could construct a machine Z that chooses the sentences {φ_i|"The f(i) digit of π is a 3"}
 - (where f(i) grows faster than the best π-digit calculator can manage)
 - Conjecture: this is an irreducible pattern with p = 1/10
- Or, $\{\phi_i|$ "The first digit of 3 \uparrow^i 3 is a 1" $\}$
 - (where $x \uparrow^1 y = x^y$, $x \uparrow^n 1 = x$, and $x \uparrow^n y = x \uparrow^{n-1} (x \uparrow^n (y-1))$)
 - Conjecture: since Benford's Law holds for powers of 3, we expect this to be an irreducible pattern with $p = \log_{10}(2)$
- We'd like to have a general way to find all such patterns...

The Generalized Benford Test

- ► Inspired by Benford's Law (first digit follows $p(d) = \log_{10} (1 + 1/d)$)
- We'll design an algorithm A_{L,T} that on every input N ∈ ℕ outputs a value ℙ(φ_N) ∈ [0, 1]
 - Within time bound "close" to O(T(N)),

$$R(N) = T(N) \cdot N^4 \cdot \log(T(N))$$

► A_{L,T} passes the generalized Benford test if for all irreducible patterns S and their respective probabilities p,

$$\lim_{\substack{N\to\infty\\N\in S}}A_{L,T}(N)=p$$

Finding Irreducible Patterns

- ► For a single sentence φ_N, find a "reference class" containing it
 - eg: all digits of π , first digit of powers of 3
- Use a theorem prover L to test patterns
 - L(N) halts pointing at a 1 if ZFC proves ϕ_N ,
 - Halts pointing at a 0 if ZFC disproves ϕ_N ,
 - Otherwise doesn't halt
- Strategy: iterate over pairs of Turing machines X and Y
 - X : best irreducible pattern, S_X , that contains N
 - *Y* : worst case subsequence, $S_Y \subseteq S_X$

Finding Irreducible Patterns

- Let $S = \{i \in [0 \dots N] | X \text{ and } Y \text{ accept } i \text{ within time } T(i) \}$
 - Simulate L with time limit T(N) on each i ∈ S; stop at N or first time-out
 - $Q_N(X, Y)$ is number of sentences that were decided in time
 - $F_N(X, Y)$ is the fraction (out of Q_N) that were true
- Define an objective B_N measuring the deviation in subset S_Y from the putative irreducible pattern S_X with probability approximately P

$$B_N(X, Y, P) =$$

$$\max\left(K(X), \frac{|F_N(X, Y) - P|\sqrt{Q_N(X, Y)}}{K(Y)\sqrt{\log \log Q_N(X, Y)}}\right)$$

Properties of Our Algorithm

Algorithm computes (see paper for fuller sketch)

$$\underset{P \in J_N}{\operatorname{argmin}} \max_{Y \in TM(N)} \min_{X \in TM(N)} B_N(X, Y, P),$$

$$J_N = \left\{ \frac{0}{N}, \frac{1}{N}, \dots, \frac{N}{N} \right\}$$

- TM(N) is set of Turing machines that accept N within T(N) steps
- Passes the Generalized Benford Test
 - ► When *X* enumerates an irreducible pattern, *B_N* has a constant upper bound
 - ► B_N having a constant upper bound implies that for sufficiently large N, P will be driven arbitrarily close to p

Summary

- Benford's Law points at logical uncertainty motivated by hard-to-compute sequences of logical sentences.
- The law of the iterated logarithm yields an "empirical" test of randomness that can be used to locate a "reference class" for a single sentence.
- Although this method yields a fully-specified logical uncertainty, we don't yet know how to combine it with notions of coherence.

References I

[1] Rohit Parikh.

Knowledge and the Problem of Logical Omniscience.

In ISMIS, volume 87, pages 432–349, 1987.

[2] Mikaël Cozic.

Impossible States at Work: Logical Omniscience and Rational Choice.

In *Contributions to Economic Analysis*, volume 280, pages 47–68, 2006.

[3] Joseph Y Halpern and Riccardo Pucella.

Dealing with Logical Omniscience.

In *Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge*, pages 169–176. ACM, 2007.

References II

[4] Marcus Hutter, John W. Lloyd, Kee Siong Ng, and William T. B. Uther.

Probabilities on sentences in an expressive logic.

Journal of Applied Logic, 11(4):386–420, 2013.

[5] Abram Demski.

Logical prior probability.

Artificial General Intelligence. 5th International Conference, AGI 2012, Oxford, UK, December 8–11, 2012. Proceedings, (7716):50–59, 2012.

[6] Haim Gaifman.

Concerning measures in first order calculi.

Israel Journal of Mathematics, 2(1):1–18, 1964.